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ON THE ENERGY OF AN ELASTIC ROD* 

V.L. BERDICHEVSKII 

It is shown that the general geometrically nonlinear problem of the three-dimension- 

al theory of elasticity for a rod can be split into a nonlinear "one-dimensional" 

problem (one-dimensional theory of rods) and a linear "two-dimensional" problem. A 
number of constant "effective" elastic characteristics of the rod is intheequation 
of the one-dimensional theory, and they are determined by having the linear two- 
dimensional problem solved (the section problem). The section problemis formulated 
in the general case of inhomogeneity and anisotropy as a problem on the minimum of 

a certain functional (the results presented in /l/, wherein reasoning from /2/ is 

used, are elucidated in this part). The properties of the section problem are form- 
ulated. A double variational problem is constructed. Certain two-sided estimates 
are given for the effective elastic moduli of inhomogeneous rods. A criterion is 
obtained for the validity of the strength of materials formula to evaluate the ef- 

fective tension andbendingmoduli of an inhomogeneous rod. 

1. One-dimensional theory of rods. A curve r provided with the ortho triad T, (IL. 
h, c - 1. 2, 3) one of whose vectors, TV for definiteness, is tangent tc r, is modeled in the 

classical theory of rods. For a fixed position of the curve r. the ortho triad is determined 
to the accuracy of a rotation around the tangent vector. The appropriate degree of freedom 
describes the rotation of the cross-sections. 

The deformed state of the rod is given by the components ri(f), the radius-vector Of 

points of the curve r and the components r,.'(E)of the vectors r,, (5 is a parameter on I‘, the 

subscripts i,j,k correspond to the projections on the axes of the Cartesian coordinate system 

of the observer and run through +he values 1,2,3; the quantities with the super and subscripts 
agree; the site of the index is selected in conformity with the rule of summation over repeat- 

ed sub- and superscripts). 

The quantities r..' satisfy the constraints 

where I is the arclength along 1'. and 6.,,, is the Kronecker delta. 
The deformed state of the rod has four functionallyindependentdegrees Of freedom. 

In the unstrained state the curve r occupies the position I',, determined by a radius- 

vector with the components r;,,)(k); in the initial state the ortho triad vector components are 

denoted by r,,,i(&). It is understood that the vectors r(o)1 and Q,,* are relatedto thegeometry 

of the cross-section (for instance, are directed along the axes of inertia of the CrOSS-SeCt- 

ion or to the physical properties of the rod. We consider the parameter E to be the arclength 

on To, 0 :::; E < 1 To 1, where 1 To 1 is the length of I',. The extension of the red is 

characterized by the quantity *f I,? (dr',ric,cfr,,& -- 1). 

Let oc and 00~ denote the quantities 

(0" 7 ’ ? c “‘-Tt.,dT:fd.s. ‘. t’,,(,; = I .‘t+-’ ri,,,‘dT{&d~ il.:) 

where ea(" is the Levi-Civita symbol. 

It follows from the first equality in (1.1) and from (1.2) that the following relation- 

ships (the analog of the Frenet formulas) are valid 

dr;,ds :- P,,,., car'!'. dT,,,:,:d: =.- TV...,-&OF;;, (1.3) 

Let us define the measure of rod strain _‘ by the equalities 
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@ = fl + 2y)‘/wc - CI.&, = l/2 eoDc ~~i~~~~~~ - ~~~~~~~1~~~~ @) if.41 

We agree that the smal.1 Greek letters run through the Values 1,2, and the index 3 willbe 

omitted when confusiof will not ensue (for instance r:sri, Z&~ Ti$,, Q3 = 0, 6& = OF-J), @ =E 6,. 

The quantities Q” and 51 are used in classical theory as measures Of the bending and 

torsion of the rod, respectively. 
To simplify the tensor mode of wxiting the further relationships, we take the quantities 

Qti = e,&@ as the measure of the bending in place of @ , where eUli is the two-dimen- 

sional Levi-Civita symbol(eu= eZz = 0, e,? = -e,, = I), The upper bar is omitted over the measuxe 
of the torsion (n ss a), 

The functional of the rod energy on which the dead external forces act in classicaltheory 
has the form 

I 
r=J&u,n,,Q)+~ 11.51 

0" 

where @ is the internal energy per unit length of rod, and L is the work of the external forc- 

es. 
The expression (1.5) will be derived below as a result of an asymptotic analysis of the 

energy functional of a three-dimensional elastic body by the method elucidated in /1,2/. The 
main result is a formula to evaluate the energy density @by means of physical characteristics 
and the geometry of the rod cross-section. The energy density @of a physically linear aniso- 
tropic inhomogeneous rod is given by the equality 

a, = '/? < E (v + Ea Q,)Z > + r (y, R,, 52) (1.6) 

where the angular brackets are the integral over the domain of the cross-section S,P are 
Cartesian coordinates in the crass-section, E is Young's modulus, y (y, Q,, 9) is the minimal 
value of a certain functional @ which is a quadratic functional of the three functions y, and 
y defined in the domain Sthat depends on y? 9, and D as on the parameters 

Y"(t', Q,, Q) = inf*~,~~(~~, 9; Y, Q,, l2i (1.7) 

The functional il is the sum of two positive quadratic functionals @,: and 6)~ of the form 

O,== I12 (G'" (vicr t hQed* + C, (y i- @2&Y (a-+ Bf: (1.81 

6, = I$ (C hm3) 5 &13 (Y i f&CJ) + CB @ah 4- ~fk&% fa, B -+ Y, W (1.9) 

Here @fit C,,Ca@va, C,p, Cf are "two-dimensional projections" of the elastic moduli tensor, 
h is the diameter of the cross-section, 5" = @l/z the vertical bar separating the Greek sub- 
scripts denotes differentiation with respect to c", the symbol (a-+ fl) denotes the preceding 
brackets with the subscript a replaced by @. The function y (5") has the meaning of a dimens- 
ionless warping of the cross-section, while the function y,@) is the displacement component 
in the plane of the cross-section. The functional 81 is independent of y,. 

In the particular case of an isotropic homogeneous rod, as is shown below, infel = 0 
and the problem of the minimum of the functional eLis equivalent to the torsion problem of 
Saint-Venant. The function yiis given by the equality Y = l/,COs, where C is the torsional 
stiffness of the rod; (1.6) here goes over into the known formula from strength of materials. 
For anisotropic or inhomogeneous rods, the function YPccntains additional components whose 
evaluation is related to the solution of the variational problem (1.7). 

2. A three-dimensional functional. Let us consider an elastic, in~omogeneo~s anise- 
tropic body occupying a domain V 0 in its undeformed state. The domain V, is formed by motion 
along the space curve ro (the rod axis) of a plane figure Sat each point of the perpendicular 
aXiS. Let us introduce a curvilinear coordinate system $", 5 in Vo by means of the formulas 

It is assumed that ga = 0 is the center of gravity of 8, i.e., (E'> = 0. The coordin- 
ates E", 5 are considered co-moving. 

Valuesofthe metric tensor components g(~~~,g~~~~,g{~~ in the coordinate system g",E are 
presented in /3/, for example. 

Let us consider that o& is a continuously differentiable function of E. For suffic- 
iently small numbers Rthe following inequalities are valid 
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We call the best constant in the inequalities (2.2) (the maximum of the numbers R :<,I 
which (2.2) hold), the characteristic scale of the curvature and torsion. It is assumed that 
h< R. 

Let us consider the problem of the equilibrium of an elastic rod subjected to dead s'~r- 
face and volume forces under the condition that the following particle positions are given on 
the rod endfaces 

$(;=, 0)~ oi -; b;[=, .I! (E”, ( I-,, I) = a; + b;=;% \ : ri . 3; 

Here I'(&'=, 5) are functions governing the particle position in the deformed state, ;md 
ai, a;, b,‘. b,,’ are given constants. 

Rod equilibria correspond to stationary points of the functional 

I = ( d: ((d) - (~,2 (:=. j): .-- \‘ P,tl (:a, 5) do i 12.4) 
r‘. ,$ 

in the set of functions z'@, E) which satisfy the constraints (2.3). The Ciin (2.4) is a 
given function of the strain tensor components, 2e=a = z:=. z,,~ --gotiD. 2~~~ =z~=z,,~--~=,~, 2~~~ = 
~f;z,,~-&=;~, the comma in front of the E in the subscripts denotes differentiation with respect 
to E. the comma in front of the Greek subscripts denotes differentiation with respect to 
S=. % -. 

1s a determinant, the initial metric x E. 1 I o~=,=~~, ri and Pi are the volumeandsurface 
force components. 

For small h it is required to replace the problem of finding the stationary pintsof the 
functional (2.4) by an approximate "one-dimensional" problem in which only functions of ? 
figure. 

We shall limit ourselves to the examination of small strains and we start with an invest 
igation of a physically linear elastic body, when Cris a quadratic form in the strains. 

Let us represent L/in the form of the sum of three positive-definite quadratic forms 

From the formula 

Ui, = min,=8,pa31', U, =mint=a(L' - C,,), L‘, :: li -L,, --LL:i 

it follows that this representation is unique, and the two dimensional tensors E=P,6 G"". E,@ * L _. . . . . . . 
JZ$, Em E, can be considered as independent components of the three-dimenslonalelasf~cmoaull 
tensor. This latter can be expressed in terms of two-dimensional tensors if the brackets in 
(2.5) are expanded. 

We shall construct a "one-dimensional" functional by using the passage to the limit 

h-0. The papers /4-S/ are devoted to the appropriate asymptotic analysis of the elasticity 
theory equations. Formulation of the problem should be supplemented by an indication of the 
dependence of the characteristics of the external actions PI and F, and of the elastic moduli 

tensor components on h. Something will be said about this below. 
We make the change of variables E=== hj=. After replacement of the domain of the change 

of variables ca, E is independent of h, and the parameter h enters the functional explicitly. 
The domain of variation of the variables 5" exactly as the domain of variation of E". 1s 

denoted by s. 

3. Replacement of the sought functions. We introduce the functions 

where 1 s 1 is the area of the cross-section s. 
We call the curve f' - r'(E) the deformed axis of the rod. 
We endow the curve I‘with two unit vectors T,'(C), which are mutually orthogonal 317 ZI 

orthogonal to the vector lL =: dr’lds. 
We make the change in the sought functions .r' (E", E) - yi K". E) 

;3.21 
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Because of the definition of r'(t) (3.1) I the functions y'satisfy the constraints 

<J/'> =rJ (3.3) 

The additional degree of freedom that occurs with the aSSigNSent Of $ permits imposi- 
tion of still another constraint on y' . For definiteness, we take the equality 

e*Qf.& =O, th=&4 (3.4) 

as such a constraint. 
The equality (3.2) sets up a mutually one-to-one correspondence between all the functions 

z'(E",E) and all the sets (r’(Q, T,‘(&), ~‘(5”. &)} subject to the constraints (3.3) and (3.41, and 
the orthonormality condition of the triad 7, (1.11. 

The functions ri and 7,' at the rod endfaces are selected in conformity with the bound- 
ary conditions (2.1) 

ri (0) = a’, ri (I r. [) = ali, of (0) = bb, rh (I r~ I) = bh (3.5) 

Here 

Y' (5", 0) = Y' (5", I l-0 I) = 0 (3.6) 

4. Characteristic scale. We define the amplitude of the bending-torsion deformation 
Fn and the amplitude of the extension of axis F,, by the formulas 

ep=tzmax~(Q$l")'~~, Ey=max~IvI 

The quantity E = ES -t- ~~ characterizes the amplitude of the deformations. 
We introduce the characteristic scale of variation of the state of deformation 1 as the 

best constant in the system of inequalities 

(4.1) 

The scale t is a function of E. We assUme that the scale E is commensurate with h in 
the neighborhood of the endfaces O.< E,< b, 1 r. / - b<E,< f Fe 1.6 mh, while h,,=h/i((l far 
from the endfaces. 

5. Elastic moduli and external forces. The components of the tensors EdEti G",B, IL 
have the dimensionality of the shear modulus G, while the tensor components Easy Eag, E, are 
dimensionless. Because of the positive-definiteness of c'g, u, and u, the tensors E@@ and 
G>' are positive definite, while En is a positive scalar. The dimensionless tensors &a~, 
&p and &can take on arbitrary values. 

We assume that as h-+0 

E, = E(ja, j) -I- O(Gh,), Gs" -cG'=@(~~, Q-f O(Gh,) (5.1: 
EM@ =C"Eyd(Sa, E) + Of%), .ZS= C%(S=, El + O(GQ 
&p--&P, 8) -t o(Gh,), &=Ca(Y, E) f O(Gh,), /I, =h/R 

If the elastic properties are symmetric relative to a plane perpendicular to the rod axis, 
then the two-dimensional tensors with an odd number of indices vanish: Ca$ = c, = 0. If, 
in addition, the elastic properties are invariant relative to rotation in the cross-sectional 
plane (a transversely isotropic body), then in conformity with the general theory of tensor 
functions /9/: 

The elastic properties of such a body are determined by the parameters E,C,h,!t, v, where 
E.G. 1~ and X -A 1, are positive, while the quantity v is arbitrary. For an isotropic body 
E = 2~ (1 i- v) is Young's modulus, G= p is the shear modulus, and v = '/,A (h + p)-" is the 
Poisson's ratio. 
ulus, G@ 

In the anisotropic case E is naturally called the longitudinal Young's mod- 
is the tensor of the shear modulus, and Ca@ is the tensor of the (transverse) 

Poisson's ratios. 
Let US turn attention to the fact that the "prelimit" two-dimensional tensors of odd 

rank differ from zero because the coordinate system, is curvilinear, even for an isotropic 
body, as is seen from their expressions presented in /3/. 

For the external forces we take the conditions 
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and for simplicity, we limit ourselves to the consideration of external VOiU::iC! furCf5 %ti 1 cc: 

are constant over the cross-section. 

6. Asymptotic analysis of the energy functional. Let us constr'uct ;I tiieory ..:t 
rods in a first approximation. This means that all quantities on the crdcr of t. /!* alrti /I,+ 
are neglected as compared with one. 

Let us determine r' (6) and TV' Cc) and we seek Y' in a first approximation. WC assume 
!/I - V. Then, in a first approximation, the equaiities 

are valid for the strain components. 

Here Y -- (1 3;)’ T’!/,. and symmetrization is noted by the parentheses in the Subscripts. 

The derivatives 3f y’ with respect to 5 do not enter into the functional, it does not "ma:::t- 
ain" the boundary conditions (3.6), annd seeking 
0 = 8, + el. for each 5, 

Y and YU reduces to minimizing the quantity 
while 1-)( and (-1? are given by (1.2) and (1.3). 

The minimum is sought over all functions Y= and Y satisfyiny the constraints 

in conformity with (3.j) and (3.4). 

The work of the external forces is discarded because of the estimates (5.1). The minin~z- 
ing functions of the functional 6) are evidently of order t'. This yields the foundation for 
the validity of the assumption made. 

The minimal value 'I' of the functional 1-j is a certain quadratic form of the parameters ;' 
f&and R. According to (2.5), (5.1) and i6.1), the linear energy density of the rod :nwhich 

just terms on the order of Gh't' are retained is given by (1.6!. 

The first term in (1.6) characterizes the tensile and bending energy, the second the tor- 

sional energy and the additional contribution to the tensile and bending energy from the trans- 

verse strain. 

7. Investigation of the section problem. Homogeneous rods. Finding the mini- 

mizing functions of the functional @is equivalent to solving the Neumann boundary value 
problem for a system of three second-order ellipticequationswith variable coefficients in !Y~. 

Y* It is equivalent to a mixed boundary value problem for a system of second and fo;lrth 

order equations in Y and the stress function y-which is obtained by passing to the dual varia- 

tional problem by the general rule ./lo/. We present its formulation 

where the upper bound is sought inallfunctions ;{ satisfying the conditions 

/I,‘ rr)lId :T..?) 

on the boundary of the domain S, and &i:.,h is the inverse tensor to ('up26 in the sense that 

(&l.'b“V z- h&& 

As a rule, the variational problems fo_nulated can be solved only be numerical method:;. 

There are individual cases, some of which will be examined, when sufficiently essential inform- 

ation is successfully obtained by elementary means. 
The results from /11,12/ will beelucidatedbelow in this section in variational terminol- 

ogy and tensor form (see the monograph /13/ also). 
Let a rod be homogeneous in the transverse directions, i.e., Ca@v6, G”fi.i’x,$, C’%B and I', 

are independent of ;a. Then for a rod with arbitrary cross-sectional geometry and anisotropy 

of general form \I’ is independent of y, and measures of the bending and torsion enter q'in the 

form of the combinations f& = f! - "~e'%,,f&.. hence 
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here the torsional stiffness C is the minimum value of the functional 

(7 = ir$ I$3 cG"~(z,, -i- e,,C?) (a-P) 4 CaRya(zccr~p, -A- C&zv.)(a, P-Y, 6)) 

Indeed, let us replace the requiredfunctions 

(7.4) 

y = -c,;';a - '/rC,h8P(i=;~ - <:"&I s I) + Al!*r. 

Ya L -(C,p,-C~~Cb);,;b-'il~,,,(~E~Y- C;",'j/[S I)+ hE,r, 

We take solutions of the linear system of equations 

(7.5) 

(7.6) 

It can be seen by direct substitution that for any tensor of the third rank aagy that is 

symmetric relative to the last two subscripts, the following identity holds 

0 ..,-n ar', - cc&v+ "P.zV)P, -Otpy)rr (7.7) 

This latter equality (7.7) yields the solution of the system (7.6). 
Substituting (7.5) into (1.7) and (1.8) with (7.6) taken into account results in the 

relationships (7.3) and (7.4). There remains still to note that the constraints (3.3) and 
(3.4) are not essential to the evaluation of the lower boundary of the functional 6 since it 
is invariant with respect to the substitutions e-Y+C, la--y, $c,+ee,&~,c,c,, o are constants. 

Elliptical rod. Let s be given by the equation b,p,jac$<l,b,B which is a symmetric 
positive definite tensor. It is not difficult to guess the minimizing functions: they satisfy 
the equations (a is a constant) 

(7.8) 

where Gag -l is a tensor inverse to Gag, (7,m, is the solution of a linear system of equations 
d(,mV = - C,$ (aGo,.-leoxb,s - e,~.), which is given by (7.7). Consequently C= a2G$,e~~e~~b~,,b,,I”‘, I’“= 
@tV> Or taking into account that ba8 = ‘/d 1 S 1 h21.$ (f$fiV = 6,V), for an ellipse, we have 

C = 4 [G,~ea~eflvl;\]-l (7.9) 

We turn attention to the fact that the value of the torsional stiffness is obtained with- 
out any assumptions about the coaxiality of the tensors Gas and la@, 

Estimate of the torsional stiffness of a homogeneous anisotropic rod of 
arbitrary cross-section. The estimate 

is valid for the torsional stiffness. 
It is an extension of the inequality /14/ that is written as follows in 

to the anisotropic case. 
To derive the inequality (7.11) from (7.10), it should be recalled that 

the anisotropic case. 

Cf. 10) 

tensor form 

(7.11) 

We substitute (7.81, in which bap,are arbitrary parameters , as trial functions into the 
functional (7.4). This results in the estimate 

Here we have introduced the temporary notation -$V _ C,'8&&' 
We now minimize the right side of (7.12) with respect to ba8_ This is equivalent to 
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minimizing the quadratic form ??‘Vbtib,f”” under the constraints @“b =: 1. It can be shown thar 
the minimum is achieved at bae-/;$?Yf~~)-l which indeed proves the azertion expressed. 

An estimate, analogous (and possibly also equivalent) to (7.101, was constructed in ;/12.', 
however it has a very much more complex form. 

8. Inhomogeneous rods. In examining inhomogeneous rods, we restrict oilrselves to 
the case when the rod has a plane of elastic symmetry perpendicular to the axis. Here C=gY 7. 
C, = 0 and the problem about the minimum of the functional 0 splits into two independent 

problems, the problem of the minimum of the functional 8, (Y), with respect to y, and the 

problem of the minimum of the functional 0, (Y=) with respect to Y,. The former 1s substant- 

ially the Saint-Venant problem on torsion /15,16/. The function minimizing H,, (Y) is evident-. 
ly proportional to Q and 'f', = inf,eL(Y) = llzC!dz. The latter problem corresponds to a certain 

plane problem of the linear theory of elasticity which N.I. Muskhelishvili investigated in 
the isotropic case /17/. The minimizing functions depend linearly on y and !3= hence, the 
minimal valueyi of the functional 6l_ will be a nonnegative quadratic form in y and 52, 

Y'_=in~=8,='/,I SI(Elya + 2E~yil, C E~‘R&) (8.i) 

Centrally-symmetric section. The cross-section is said to be centrally symmetric 
ifbesideseach point with the coordinates 5 a it contains a point with the coordinates-_5'=.For 
functionsdefine in centrally symmetric domains, the concept of evenness can be introduced; 

each functioncan be represented in the form of a sum of odd and even functions (they are mark- 

ed,respectively, by one and two primes). 

Let C@fl and Cab be even functions of 5". Then the functional 81 splitsintothesumof 
two functionals 

0; = '& < C‘=a* (Y;=,p; + C=& (n.B -* Y,6)? 

f-J_ = 'I2 (C=av* (yi=,a) + C=&l,:=)(a,P --+ s,b)\ 

They can be minimized independently. The lower bound of (9,’ is proportional to y', and 

of e;to n=*. Thus under the assumptions made El" = 8. The same deduction is obtained if 

Cafi are odd functions of ia. 

Inhomogeneous rod with constant Poisson's ratios. It turns out that the fol- 

lowing remarkable equality holds for C=a = const 

Y, = 0 (8.2) 

For the proof we use the fact that evaluation of 0, by any functions Y= yields the upper 

bound of v' -. We put 

y= = - c=# - 'i? OaPv @5y - (&'>/l.'I) 

where ocr& is the solution of the system =(=i%v -: C=phll,,. In these functions f3-- 0. Therefore, 

V,<O. Hence (8.2) follows by virtue of the non-negativity of YI_ 

The minimizing functions y= of the functional B,_ are universal in form for an arbitrary 

cross-section and arbitrary dependence on the coordinates of the elastic moduli Cab*; it is 

found by using (7.7) 

y== -r=gY. 'fl-(C=ahr,.,- '!'C&hQ,) i&Y- ':fi;v,!l.sI) 

Criterion that Yy, vanishes. The quadratic form yL equals zero identically not only 

for rods with constant Poisson's ratios, but also for certain rods with variable Poisson's 

ratios. 
The following assertion is Correct. 

Let the domain S be divided into two parts s, and S, by a differentiating line I,. The 

Poisson's ratios in each part are continuous, but become discontinuous on the line L. Then 

for the quadratic form vlto vanish, it is necessary and sufficient that there exists a func- 

tion c (c") such that in the domain of continuity Of C=p 

and on the line of discontinuity 

C'=fl==rkzfi (8.3! 

(8.4) 
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The symbol [.I denotes the difference between values of the function on both sides of 

the discontinuity. 

Proof. Sufficiency. We put 

Y== --C(,(y+hQ,iO) -I-~~Q,+Q,+Q,L~ 

where tia,e are constants whose values are different in S, and s,. We select these constants 
so that the condition [y,]=O would be satisfied on L. Relying on the eonditionofkinematic 

compatibility d[c]/d~ = r,dca/do(r,r Ic,,l, ois a parameter on I, from which it followsthat/cl= r,LCL-!- 
r,r= con&we find that [y,] =0 for [.z,I=~,~+ tk&2,,[w]=~mr~~,. The functions yo. constructed are 
allowable and 9, = 0 on them, therefore vvl. = 0. 

Necessity. Let v_= 0. Then by virtue of the nonnegativityof U,_ULrO and the plane 
"deformations" C,$ and C,ap should be compatible. It follows from the condition of compat- 
ibility in the plane problem that C,s should satisfy the system of equations 

(8.5) 

2C,&A + fC,, - c&J $3 -I- v:,e - C;,J a, - caie - cBlta = 0 18.6) 

Removing (8.6) in a,& we obtain C$ = CxiY. Hence, and from (8.6) 

2C,BIJ, = C,1IE + CBAliz (8.7) 

We express Cave in (8.7) by the formula obtained from (8.7) by replacing the subscripts 
@rz?h Taking account of the symmetry of C,s we obtain Ca,,,%= Callar. Therefore, there exists 
a vector ~~(6~) such that CaB = ~6. The condition of symmetry of CaB means that the vector cq 
is a potential one, cp= clar and therefore, the equalities (8.3) hold. Hence (8.5) and (8.6) 
are satisfied. The formulas written down above for y~r result from (8.3) and the condition 
U,_==O and it can be seen that the requirement of continuity of y, results in the conditins 
(8.4). 

Let us present a number of elementary corollaries of the criterion formulated. 

Corollary. lo. If \Y, = 0 for an inhomogeneous anisotropic rod with discontinuous 
Poisson'sratios,then on the line of discontinuity these Poisson's ratios satisfy the condit- 
ion 

IC,Bl t@ = 0 (8.8) 

where T@ is the tangent vector to the line of discontinuity. 

2O. For a transversely isotropic rod Y', I 0 if an only if the Poisson's ratio v is con- 
stant. 

0 
If for an inhomogeneous anisotropic rod with piecewise-constant Poisson's 

Yi z30:then i) detlf IC,bl I/ = 0 
ratios 

and 2) the lines of discontinuity are lines perpendicular to 
those of the principal axes of the tensor fCaSf for which the appropriate eigenvalue ECua] is 
not zero. 

Some estimates of \I'_. Few exact solutions of the problem of the minimum of the 
functional f)~ are known, hence, two-sided estimates of Y_, that bracket the effective one- 
dimensional energy coefficients acquire special value. We present some of the simplest esti- 
mates for inhomogeneous rods. 

Upper estimate. We take the trial function y, in the form 

ya=& t_ (6,,u,-"/*68va,)(iSSY-,:5~5Y: ! ls’j)? 
a, aa = const 

EWduatiOn Of O)I as a function Of the parameters a and acr and minimization with respect 
to a and acr result in the inequality 

Y_L,(2I((h-t V)+> - ((h. + &vYik t V;-'-&(<(i, + PfVG"> -((A + I")V) <(A "r pIi"> <h -!- P)_')X (8.9) 

(a-B)lva+ 2tGt lr)+?V> - ((h-!-u)%") Gh + p)Q> <h+ v)-I--&~(((h-l- v)QS"> - 

<(h + pL)L?) ((h + pL)v5=> (A + ~)-'!(V-S,a-B)ih?R,n,+4I((h + Mv'L"> -<(h. + F)V) <(A + pL)+> (J" + cr)-'--- 

D,(<(h + lr)v59 --<(hi- &4)v) <is + pL)Q? @ fP>_')X (<(A+ p)v5V> -<(h i- lt)GV> G-i- II)vY) 0" c r>-'flY& 
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Here DaBdenotes the tensor inverse to the tensor 

((h + ~)~"<13; - <(i .V u)ga: :O. 1. p):H ,j. ! 1~ -1 

In particular, we examine a rod with a cerltrally-symmetric transverse sccl:::..rl and ei'l?:: 
functions h and /t. Then (0, + p) \I<") = il and the estimate (ti.9) for the additl'>n of fi; I;: 
the effective Young's modulus yields 

E I < 4 (((A f p) VL ) - ((h -i }I) V’ 2 (i ‘- !l>-‘) iI s 1 ;8. IO! 

Let the rod consist of two homogeneous materials whose elastic characteristics are denot- 

ed by the subscripts 1 and 2, and the relative areas occupied by a and 1- 0 Ihe ireaua'i'v a_ -'_ 
(8.10) becomes 

iU.ll) 

For comparison we present the exact value of t?,_ found in /17/ for a circular rod ror 
which the Lam6 parameters have the values i,. 1~~ for 15’ 12 -i_ I :e I* .< H,? and A,. pz for R, ._I , 51 I? I~ 
It’!* < R, 

E = 41(1 - (L)(v, - v,y 12 (J., :- ,+-1 .- (I - %‘I()., -. .(,/-I :- !I*-‘).-’ ( 8. 1.2 j 

Comparing (8.11) and (8.12) shows that the estimate is asymptotically exact for ,,,:~,z__,~ 
and its error increases together with PI/U?. 

Lower estimate. In contrast to the upper estimate, a lower estimate is not construct- 

ed successfully by using the dual variational problem (7.1) for any cross-section since the 

function % should satisfy the boundary conditions (7.2) on the section boundary. To illus- 

trate application of the dual problem, we obtain the lower estimate of E. for an isotropic 

circular rod with parameters i. )t varying over the section. 
f"rm ;< = I! (t:" - '1,)2. 

We take the-function I in the 
H ere conditions (7.2) are satisfied. Substitution into (7.1) and max- 

imization with respect to the parameter n yield 

E_ b 4 (y (&;a -",)‘ 1 I'!, ()'-I (&;a)a: .: <(j. . p’;-J (F,cZ. ’ r)2; i“ 1.j i-1 

Let us note that (v (La:, -. ':'J> -= ((v -- (v‘ iSI_') :,I" and the riyht side ot :hc lower esti- 

mate vanishes, as it should, for 5‘ .- cc,nPt. 

9. Energy of a rod from physically linear material. The rod deformation is 

determined completely by y, Q, and Q, hence, in a first approximation the principal terms in 

f. '&and R and the principal cross terms must be retained in the expression for the energy 
density 0. The principal terms in y.Qn, and Rare contained in (1.6). As is seen from the 

results in Sects. 7 and 8, the cross terms in (1.6) can vanish and the principal cross terms 

turn out to be among the energy components of the order of uhZ (? -:- h,p* -i- h,,~?). h’e first con- 

sider the energy tl, (1.6) of the order of uh'r', and we then evaluate the cross terms. 

Homogeneous anisotropic rods. From (1.6) and (7.1! we obtain 

20 = 6 1 S / I* ..,. EIQKL&R -?- (‘$1 -- 1/2eWv(~,L~)* (9.1) 

If the elastic properties of the rod are symmetric with respect to a plane perpendicular 

to the axis, then (9.1) goes over into the classical expression 

"(11 12 E ) ,y 1 y? .; EIUr. Q,Ry + (.‘Q* ; 9 . I’ ) 

In the opposite case, the component -Ce”“C,Q,Q, that describes the cross interactionbetween 

the torsion and the bending enters the expression for the energy, and the effective bending 

stiffnesses are determined by not only the tensor of the moments of inertia of the section 

(gla8isas in the classical case) but also by an addition associated with the torsional stiff- 

ness. The bending stiffnesseshavethe form Slap-t '/,Cfl~vBCpC,. We note that the cross inter- 

action and the increase in bending stiffness occur only for bending in the plane perpendicular 

to the vector C,. 
We shall later examine rods whose elastic properties are Symmetric relaclve to d plane 

perpendicular to the axis. 
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Inhomogeneous rods. According to (1.6) and (8.1) 

(9.3) 

An interesting observation made for the isotropic case by N.I. Muskhelishvili /ll/, is 
associated with this equality and (8.2). Let there be two rods with identical values of <E>, 
@s$) and (Ega:@) and different valuesofthe Poisson's ratios C,p where the Poisson's ratios 
are constant for one rod. Then the bending stiffness and the Young's modulus are greater in 
the rod whose Posson's ratios are variable (if the latter do not here satisfy the criterions 
of rp,degeneration (8.3) and (8.4); N.I. Muskhelishvili considered piecewise-homogeneous iso- 
tropic rods for which there can be no degeneration of 'rlaccording to Corollary 2 of Sect.8). 

For rods with a centrally symmetric cross-section and even elastic properties (ES"> = 
ELa= 0 and the cross effect between the tension and bending vanishes. 

Cross terms. We limit ourselves to an analysis of homogeneous anisotropic rods with 
centrally-symmetric section and we take h,< r so that terms on the order of &E’ can be 
neglected as comparedwithterms ontheorderof e3; ; this latter assumptionis valid, in part- 
icular, forstraightrodsintheundeformedstate . Crosstermsontheorderof k,G wereconstruct- 
ed in /3,18/. 

It can be confirmed that only the following components of the expression for the strain 

ze,, = y,, + IV2 ( f - C’$) P&y -h ;+ 1‘&” (9.4) 

will yield contributions to the energy because of the central symmetry of the cross-sectionand 
the evenness properties of y and y,. 

The expressions (9.41 contain corrections of the order of c and I!,, as compared to one. 
In conformity with the general scheme of the variational-asymptotic method /2/, y and y, 

must be represented in the form y y= y, -I- y'. IJ~ = y,, J-y,' to construct all the corrections of 
order E and hL**, where $/a. goa are the minimizing functionals of the functional 0, the prin- 
cipal terms in y', y,' and the principal cross terms must be retained in the expression for the 
energy density of a three-dimensional body, and the obtained functional must then be minimized 
with respect to Y', Y,'. It can be confirmed that the quantity y,'will hence turn out to be 
of the order of e2 and can be discarded since no cross terms between yea and I/a'will enter the 
expression for the energy because of the Euler equations for the functional ")i , and the de- 
termination of the energy with corrections on the order of e and h,, taken into account is 
equivalent to replacing the torsion problem by a "refined" torsion problem 

The substitution Y-+2 

y=l/#zaS(j=c@ - (S"i"; /jSjlhdy/ds + hn(t --c$q; 

reduces it to a torsion problem. Hence, the minimum of the functional (9.5) equals '!&s2"(1 - 
Cty)'. Taking account of the expression for ~33 in (9.4), we find for the rod energy density 

cD='/Z(E(SI v2+ W"Q&j +C@) 1 &$l* -+ o;/&@n* (9.6) 

The constrants b'and Bp characterize the cross effects between the tension and the tor- 
sion, the tension and the bending, and are given by the formulas 

n = II&I: - C:C, B; = E (3/@ - C;, 

The error in (9.6) is O($*(f f& Jr E')). The expression (9.6) does not contain a cross 
term between the torsion and the bending since it is of the order $Z%**E~. 

In the isotropic case the tensor b 'pa is spherical and positive definite. The constant 8 
and the inequality (r-3-r Q l;,Ig are positive, as follows from the estimate (7.11). This 
means that the twisting of the rod causes its shortening, if the ends are free and a tensile 
force is induced if the ends are fixed. 
the anisotropic case, 

However, this will hold only for isotropic rods. In 
the constant Bean be positive because of the arbitrariness of G.E and 

v, and can also be negative. 
This can be explained as follows. Cross interaction between the tension and torsion is 

due to two geometrically nonlinear effects. Elongation of the fibers parallel to the axis 
occurs during twisting. It generates an increase in the rod energy (the first term in the 
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coefficient S). On the other hand, longitudinal elongation because of the Poisson effect lt: 
accompanied by transverse deformation, which causes (a geometrically nonlinear effect!) a1: 
additional shear strain that diminishes the shear energy (the second component in the coef- 
ficient B for Cc>O). In the isotropic case the first factor predominates and the energy 
increases, while the inverse can occur for anisotropic rods. 

We present the value of the constant R for a circular isotropic rod of radius fi: fl .._ 
'i,nR'E (1 - v) I(1 + v). 

One-dimensional functional. The equilibrium position of an elastic rod can be 
sought, in a first approximation, 'from the condition of stationarity of the functional (1.5) 
in the set of functions r'(E) and r;(t) that satisfy the constraints (1.1) and the boundarycon- 
ditions on&e endfaces (3.5). In conformity with (2.4), (3.21, (5.2) and the estimate q' : 

0 (e), the work of the external forces in (1.5) has the form 

Qizhj PidU+F,ISl, 
s 

10. Energy of a rod from Murnaghan and Mooney material. It is natural to re- 
tain contributions of order F? even in the energy of a three-dimensional bodyintakingaccount 
of the crosstennsoforder e r intheone-dimensional energy. By using the variational asymptotic 
method it can be found that the appropriate changes in @ reduce to adding values of terms on 
the order of es of the energy of a three-dimensional body, calculated in the strains (6.1). 
An expression of the form (9.6) with coefficients Band Bgagiven by the formulas 

B = ‘I? EI,fi + C (‘it (l-3) mp-’ + ‘l,vnp-’ - 2~) 

BP= = &p l(V* - v) E + (1 - 2v)r (1 - m) -t 3 (1 - 2~) x' (l$2vr) no -I- .?v*n] 

for a Mumaghan material (l,m,n are the Murnaghan constants /19/l is hence obtained for the 
energy. 

The corresponding expressions for the Mooney material have the form (c is the Mooney con- 
stant /19/J 

H = '!r El,,r - ‘I, (7 + c)C, B,q= = ‘I2 E (1 -t c) C. 
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